• Choose a post by category or constellation

  • Learn the Night Sky

  • Search strategies

    Use the Search box below to find doubles by popular name, RA, or telescope size. For example, a search on "15h" will find all doubles we've reported on that have an RA of 15 hours. A search for "60mm" will find all doubles where we used that size telescope.

From 68 Herculis (OΣ 328) to 72 Herculis and Beyond to H N 5

If you look at a star atlas (for example, chart number 52 of Sky & Telescope’s Pocket Sky Atlas), just a few degrees east of the Herculean keystone you’ll find a pair of fifth magnitude stars dominating a relatively barren star-scape. They’re 68 and 72 Herculis, the first a rather difficult pair which I found to be surprisingly less difficult to split than it should have been, and the second surrounded by a multitude of scattered components. In between these two stellar sign posts are additional faint double and multiple stars, some of which offer interesting places to pause and ponder while negotiating the interstellar interval between 72 and 68 Herculis.  And we’ll make an additional short hop through the darkness east of 72 Herculis to wrestle with the mysterious HN 5.

Here’s a wide view of the location:

Stellarium screen image with labels added, click to enlarge the image.

Stellarium screen image with labels added, click to enlarge the image.

And here’s a close-up of the area:

This is an Aladin image of the area with all the double and multiple stars in the immediate area of 68 and 72 Herculis labeled.   Click for a larger image.

This is an Aladin image of the area with all the double and multiple stars in the immediate area of 68 and 72 Herculis labeled. Click for a larger image.

We’ll start with 68 Herculis, aka OΣ 328, which, as our first chart above shows, lies midway between Pi (π) and Epsilon (ε) Herculis, and about two degrees east of the line which connects those two stars.

68 Herculis  (OΣ 328/STT 328)      HIP: 84513   SAO: 65913
RA: 17h 17.3m   Dec: +33° 06’
Magnitudes: 4.8, 10.2
Separation:  4.2”
Position Angle: 59°  (WDS 2001)
Distance: 665 Light Years (Simbad)
Spectral Classification: “A” is B 1.5

When I first saw the magnitudes of the primary and secondary, along with the separation, my first thought was that it would be pointless to try to resolve this pair with either my six inch refractor or 9.25 inch SCT. My experience has been that a pair of stars with a magnitude differential of four (usually referred to as the Delta_m) with a four arc second separation is right at the extreme visual limits of both the six and the 9.25 inch scopes.  This pair has a Delta_m of 5.4, which should have put it out of reach.

But when I saw the amazing photo below taken by Steve Smith, I reconsidered:

West is at the left to match the refractor image in the sketch below.   Click to improve the view!   (Photos used with the kind permission of Steve Smith).

West is at the left to match the refractor image in the sketch below. Click to see the secondary more clearly.  (Photos used with the kind permission of Steve Smith).

So armed with a slight ray of hope and a couple of photon absorbing Plössls, I pointed the six inch f/10 refractor up toward the zenith and took a seat.  The seeing that night was average (III on this scale), but near the top of the sky it was slightly better (something close to a IV on that same scale) — although for very short periods of time it was actually quite steady.  I had no luck with a 10mm Radian (152x), which was no surprise, and after several minutes of patient waiting, also struck out with a 6mm Astro-Tech Plössl (253x).  For whatever reason, that eyepiece does a rather good job of suppressing the glare around a primary, so I didn’t expect to do any better with the next step up in magnification.

The choice for that step fell on a 4mm Astro-Tech Plössl (380x), which isn’t quite as effective with the glare — but if you don’t try, you’ll never know.  After something like ten minutes of careful study, I managed to catch a slight elongation in the primary at the correct PA with averted vision.  Then suddenly a faint, but very distinct, point of light popped into view, lingered for a tantalizing second or two, and disappeared.  After another couple of minutes, it re-appeared for slightly longer, and then vanished.  I went back to the 6mm for a few minutes to relieve my strained eyes, didn’t see anything, went back to the 4mm once again for a few more minutes, but still failed to see any sign of the elusive secondary.

Unlike the averted vision elongation of the primary, which was rather smeared and unfocused, the faint point of light I saw was quite clear, even though it was also an averted vision object.   This sketch provides a reasonably good idea of what I saw, but keep in mind, the image was nowhere near as steady as what you see here:

First, enlarge the image to see the secondary, and then imagine trying to hold that faint point of light in view with averted vision while it bounces around at something like ten or fifteen times per second!   East and west are reversed to match the refractor view.

First, enlarge the image to see the secondary, and then imagine trying to hold that faint point of light in view with averted vision while it bounces around at something like ten or fifteen times per second!  East and west are reversed to match the refractor view.

Click to enlarge.

Click to enlarge.

While looking up the data on this star, I noticed it was a variable – in fact, the S&T Pocket Atlas identifies it as u Herculis. (NOTE: there’s also a U Herculis – upper case “U” – which is not 68 Herculis).  A search on the AAVSO site for “68 Her” turned up the data at the right, which shows it’s an eclipsing variable (click on the question mark at the right side of the “Variability type” line) with a variation in magnitude from 4.69 to 5.37 over a cycle of 2.05 days.  The light curve for 68 Her shows the dimmest part of the cycle is rather brief, so the odds of catching the pair at maximum elongation are pretty good.  It’s also quite possible the secondary is a bit brighter than the 10.2 magnitude listed for it in the WDS, which would make it slightly easier to see.

However, I noticed James Kaler places the distance between the two stars at .07 astronomical units, which amounts to fourteen times the sun’s radius.  If that’s the case, there’s another star involved here in addition to the one Steve photographed and I saw.  The 4.2″ separation of the pair at a distance of 665 light years means they’re much farther apart than fourteen solar radii.   The WDS, by the way, makes no mention of a third component.

Next stop is 72 Herculis, which lies a degree southeast of 68 Herculis (here’s our second chart again).

72 Herculis       HIP 84862   SAO 65963
RA: 17h 20.7m   Dec: +32° 28’

Identifier    Magnitudes   Separation    PA WDS
DOR 1  AB:    5.45, 10.78      308.10″   340°  2002
ARN 14 AD:    5.45,   9.01      396.40″    60°  2013
ARN 14 AE:    5.45, 10.36      302.20″    51°  2002
ARN 14 AF:    5.45, 10.37      383.20″   104°  2002
DOR 1  BC:  10.78, 13.30         6.20″   247°  2002

Distance: 46.7 Light Years (Simbad)
Spectral Classification:  “A” is G0

This is what you might call a far-flung sextuplet of mostly faint stars. The inset at the right of the sketch shows all of the members, with the exception of the unresolvable “C”. Note the 12.6 magnitude star located between “A” and “F” which hasn’t been included in the system. You’ll also notice two more double stars in the field of view, GBC 28 and BU 630, which we’ll come back to shortly. (East & west reversed, click on the sketch for an improved view).

This is what you might call a far-flung sextuplet of mostly faint stars. The inset at the right of the sketch shows all of the members, with the exception of the unresolvable “C”. Note the 12.6 magnitude star located between “A” and “F” which hasn’t been included in the system. You’ll also notice two more double stars in the field of view, GBC 28 and BU 630, which we’ll come back to shortly. (East & west reversed, click on the sketch for an improved view).

Click to enlarge the page.

Click to enlarge the page.

The first thing that intrigued me about 72 Herculis was its three letter identifier, DOR.   The references and discoverer codes in the WDS show DOR stands for Dorpat Observatory, referring to the observatory at Dorpat (now Tartu) in Estonia which was under the control of F.G.W. Struve until the mid 1830’s.   Confusing the issue is the first observation date in the WDS, 1853, which is almost twenty years after Struve left Dorpat for the Pulkovo Observatory, located south of St. Petersburg in Russia.   A check of Burnham’s 1906 double star catalog shows him referring to 72 Herculis as σ 544, and a check of Burnham’s list of references (p. vii) shows the lower case Greek letter “σ” (Sigma) refers to Dorpat Observations, Vol III, which was originally entitled Catalogus 795 stellarum duplicium, published in 1822 by F.G.W. Struve.

Since many of the more obscure Dorpat publications aren’t available on the internet, I didn’t expect to find Catalogus 795 stellarum duplicium, but fortunately it was available through Google books, and the result is the page you see above.   The third column lists Struve’s estimate of the magnitude of the primary, and the next two are the right ascension and declination – which means there were no measures of PA and separation published in this catalog.   At the bottom of the page is a perplexing note referring to the asterisked “a)” in the first column.   Since I don’t have a Latin background, I ran the sentence through Google’s translator, which garbled it badly.   Other translation engines didn’t do any better, so I checked with Neil English, author of several books on astronomy, who is well versed in Latin.  His translation is “I did not find the separation of 72 Herculis to have increased as/where it ought to have.”  That raised another question, which we’ll circle back to shortly.

Like its neighbor, 68 Herculis, 72 Herculis is also a variable star, although with a narrow range of magnitudes, 5.38 to 5.45.   Unlike its neighbor, though, 72 Herculis is much closer to us (over 600 light years closer, in fact), which is reflected in its rather high rate of proper motion.

The image is from Aladin – click to enlarge and to make the date below more legible.

The image is from Aladin – click to enlarge and to make the date below more legible.

The arrows shown on the photo are from Simbad, while the data below the photo comes from NOMAD (there’s very little difference in the proper motion rates listed in the two catalogs).  The data shown for “A” shows it moving east at .135”/year and south at a much faster rate of 1.041”/year (rounded off to three decimal places), which makes it a relative speed demon in comparison to most stars.

As you can see by just looking at the arrows, 72 Herculis A is a foreground star that’s moving relatively rapidly against the backdrop of its components, which are obviously unrelated to it.  Their inclusion provides reference points for establishing and verifying the rapid motion of 72 Herculis A.  With the aid of Simbad’s data and Aladin’s epoch plotting tool, I was able to put together this plot which shows the motion of 72 Herculis A in relation to the five components from 1800 to 2000:

Aladin image once again, click to enlarge!

Aladin image once again, click to enlarge!

If you had turned a telescope on 72 Herculis in 1800 (or in approximately 1822 as F.G.W. Struve did), 72 Her A and B would have been a more convincing visual pair, with a separation of 114” versus the 2002 WDS measure of 308.10” – quite a difference, to say the least.  Not quite warp speed, but still pretty darned impressive.

That takes us back to Struve’s comment about the separation of 72 Herculis not having increased as it should have.  Did he realize 72 Herculis A had a high rate of proper motion?  It’s highly unlikely, since there would have needed to be some previous observations of it.  Neither William Herschel or Christian Mayer include 72 Herculis in their catalogs, so Struve’s comment is still difficult to understand.

The Interstellar Interval

In between 68 and 72 Herculis are a handful of double and multiple stars that can be used to test your visual acuity and patience, two of which are shown in the sketch above of 72 Herculis.   Here’s a chart, taken from Aladin, with each of the stars identified and their data shown below:

Click to enlarge and to make the text below the image legible.

Click to enlarge and to make the text below the image legible.

I looked at all of these and had some degree of luck with each one, with the exception of POP 222 – with a 3.8 magnitude differential and a faint 12.32 magnitude secondary, plus the poor seeing, it was beyond reach that night.   One word of caution if you look this one up in Stelledoppie: as of this writing, the HIP and BD numbers shown for it are in error – they actually refer to HU 1185 (WDS 17591+3228) instead of POP 222.

GCB 28 was a tough one to separate, given the faint magnitudes and tight separations, but I managed several phantom-like averted vision glimpses of two of the three stars at 380x (using a 4mm TMB Planetary II).  The “B” component is located about one arc second northeast of the primary, putting it beyond reach due to the poor seeing.  I also needed 380x to detect an elongation in BU 630.  BU 45, on the other hand, was easily visible at 84x as an impossibly small and tight twin dots of light.  I included it at its approximate location in the bottom left corner of the sketch of SEI 542 shown below:

This pair (in the center of the field of view) can also be seen in the Aladin image above as two separate stars – at a separation of 28.80”, they’re easily resolved, provided you have enough aperture to pick out the 12.2 magnitude secondary.   (East & west reversed once again to match the refractor view).

This pair (in the center of the field of view) can also be seen in the Aladin image above as two separate stars.  At a separation of 28.80”, they’re easily resolved, provided you have enough aperture to pick out the 12.2 magnitude secondary.  (East & west reversed once again to match the refractor view).

Also shown at the bottom left of the SEI 542 sketch is BU 628, another pair that was well beyond my optical reach due to its separation of 0.5”.  However, this one is a true binary with a reasonably well determined orbit, which can be seen here.

The Mysterious HN 5

Our last stop on this tour is HN 5, which is located 51’ east and slightly south of 72 Herculis.  If you position 72 Her at the north edge of your field of view and nudge your scope to the east, the “A” and “D” components of HN 5 will pop into view. Here’s an Aladin photo, which shows both components clearly, and if you look closely, you’ll see “B” and “C” parked on opposite sides of “A”.

Aladin image with labels added, click to enlarge.

Aladin image with labels added, click to enlarge.

HN 5      HIP: 85191   SAO: 66016
RA: 17h 24.6m   Dec: +32° 15’

Identifier Magnitudes Separation   PA WDS
HN 5 AB: 8.65, 12.50       24.6″  356°  2002
HN 5 AC: 8.65, 12.20       37.3″  181°  2002
HN 5 AD: 8.65,   8.98     151.1″   15°  2003

Distance: 692 Light Years (Simbad)
Spectral Classes:  “A” is K5, “D” is M2

Both “A” and “D” have a yellow-orange-gold tint if you look closely, which would be more pronounced if the two stars were brighter.   I had to look carefully to get my first glimpse of “B” and “C”, both of which were averted vision objects. I found “C” popped into view first because it’s a bit further from the primary – under better seeing conditions, it should be possible to see it with direct vision. Judging from their tendency to be slightly elusive, the magnitudes listed for them in the WDS appear to be about right.   (East & west reversed once again, click on the sketch for a better view).

Both “A” and “D” have a yellow-orange-gold tint if you look closely, which would be more pronounced if the two stars were brighter.  I had to look carefully to get my first glimpse of “B” and “C”, both of which were averted vision objects.  I found “C” popped into view first because it’s a bit further from the primary – under better seeing conditions, it should be possible to see it with direct vision. Judging from their tendency to be slightly elusive, the magnitudes listed for them in the WDS appear to be about right.  (East & west reversed once again, click on the sketch for a better view).

So why the title above describing HN 5 as mysterious?   First, let’s take a look at Herschel’s description of if it in his 1822 catalog (source):

Click to enlarge

Click to enlarge

Herschel’s account shows he discovered this group of star in 1784, but apparently too late to get them into his 1784 catalog. The mystery here lies in his reference to the position of the stars he was looking at.  He seems to place 58 (Epsilon) Herculis to the north at a distance of 1° 22’ (no idea why he included “f. 22′ 42” ahead of 1° 22’), but the problem is HN 5 is located five degree east and 1 degree north of 58 Herculis.  When I ran his coordinates through a precession calculator, the resulting coordinates for 2000 are very close to those in the WDS for that date.  So it would appear he was looking in the correct location, but then there’s that diagram of the stars which he included – it doesn’t come close to matching the configuration of HN 5.  I’ve tried flipping and rotating my sketch to match the orientation of the Newtonian scope he used, but still can’t come up with a match for his sketch unless I include stars considerably fainter than HN 5 “A” and “D”.

However, when I looked 1° 22’ south of 58 (Epsilon) Herculis, I found 7.86 magnitude HIP 83152, which is located at a distance 1° 23’.  Just to its northwest is a distinctive parallelogram of eleventh magnitude stars, the center of which is 1° 20’ from 58 (Epsilon) Herculis:

Aladin image once again, click to enlarge.

Aladin image once again, click to enlarge.

Their configuration is very similar to those in Herschel’s diagram, but they aren’t oriented at the same angle.  Herschel normally observed at the meridian, so it’s unlikely he would have changed the orientation of his sketch from the actual appearance of the four stars.

At any rate, the HN 5 he saw is not the group of stars currently designated as HN 5.  In fact, it appears S.W. Burnham was the first to measure all four of the stars which currently make up HN 5, as shown in the excerpt below from his 1906 catalog:

Click to enlarge.

Click to enlarge.

Notice his comment “identified and measured”, which would indicate he was specifically trying to identify the stars at the location provided by William Herschel.

Of course, it’s always possible proper motion would distort the positions of stars, although it’s highly unlikely there would have been enough to change their appearance drastically between 1772 and 1903/1905.  But just for the sake of looking, here’s what I found:

Click to enlarge.

Click to enlarge.

That data shows “A” moving west at the rate of .010”/year and south .021”/year, while “D” is moving west at the rate of .003”/year and north at .018”/year, which is nowhere near enough to cause a drastic change in the orientation of the four stars.  And “C” and “D” are moving even less.

So we’ll probably never know what Sir William Herschel was looking at when he cataloged HN 5.  Once again, the solution to another stellar mystery remains locked up in the black vault of interstellar space.

Back soon with another stellar adventure.   Until then, clear skies!   😎

Advertisements

6 Responses

  1. Hi John!
    As always, very fine investigation with an equally fine story line. The 72 Hercules mystery is especially intriguing. I am wondering if Struve may have made earlier observations of this system prior to this catalogue entry. I am reviewing some of the history of Tartu Observatory and it indicates that Struve began his double star work with the Troughton 3.5″ refractor as early as 1814. Is there a possibility that the earlier director’s of the observatory may have made some observations that Struve was following up on. 10 to 15 years may have been enough to detect some change is position.

    You noted the issue of incorrect HIP and HD #’s for POP 222. I have been experiencing some real issues with similar star labels in Stelle Doppie recently. Is there another location that one can access that uses double star identifiers to access the appropriate/correct numbers for HIP, HD, SAO, etc…? Given my activity of doing right-ups on DS systems, it would be most benefical to get them correct.

    Most enjoyable!!

    Cheers, Chris.

    • Hi Chris,

      It’s possible someone else made some observations of 72 Herculis, but if so, they’re lost to history. There really was very little done in the way of double star work at Dorpat before Struve became the main observer and later director. Just read an excellent biography of F.G.W. Struve and his son, Otto, Resolute and Undertaking Characters: The lives of Wilhelm and Otto Struve, by Alan H. Batten. It’s long since out of print, but I managed to find a copy at a reasonable price through Abe Books.

      In answer to your second question, there isn’t another source for double star information that is as comprehensive as Stelledoppie, apart from the WDS. Stelledoppie not only pulls in all the information on a star which is scattered through the WDS in various files, but also provides the cross references to other identifications assigned to the star. The WDS does provide the DM (same as BD) number, though.

      I sent a message to Gianluca about what I found — hopefully he’ll be able to correct it before long. He had made some improvements to Stelledoppie prior to the current issues, which may have resulted in a coding error or something similar that caused the current problems.

      The best advice I can give for now is to use the Simbad link on the Stelledoppie page to double check whether the HIP, SAO, and BD numbers in Simbad match those in Stelledoppie. Another clue to an error is if the star you’re searching for comes up with the wrong constellation assigned to it. I’ve run into that a few times — it seems to happen when the HIP/SAO/BD number is wrong and located in an adjoining constellation.

      John

  2. Hi. John last night I had a look at 68 Herculis and straight away
    using a 6mm eyepiece in the 6 inch reflector giving me 275x I could
    see the secondary just a little dot but clearly visible, I watched it for a
    few seconds then left the eyepiece to make a few notes when I turned
    back a few minutes later there was no sign of the companion at all.
    IT must have taken me at least 10 minutes or more before I had
    another glimse of it and nowhere near as good a view as the first time.
    I have to say when I first seen it it looked brighter than 10 mag.
    I was hoping for another look at it tonight but nothing but clouds at
    the moment and rain for later.

    Pat.

  3. Hi Pat,

    Good to hear from you again.

    Also good to get a report of another observation of the secondary, especially at a lower magnification that what I needed. It wouldn’t surprise me at all if the secondary is brighter than the 10.2 magnitude shown in the WDS.

    It’s also possible the separation is wider than the 4.2″ shown, since that number is from 2001. I just checked the WDS to see if it’s been updated in the last few weeks, but the last section of the page that includes 68 Her didn’t load — maybe the page is being updated.

    Hope to have some astrometry and photometry data on 68 Herculis soon.

    John

    • Pat,

      Had another look at 68 Her (STT 328) a couple of nights ago and was able to see the secondary at 253x with little problem, which matches up well with what you experienced. So far, our photometry results indicate the secondary may well be about two-tenths of a magnitude fainter than the WDS magnitude, which is really a surprise.

      Attempts at determining the separation have been unsuccessful up to now based on images other than those taken by Steve Smith. Hopefully Steve’s image will be able to produce some results. I would really be surprised if the separation is any more than 5″ (vs. the WDS number of 4.2″), but on the other hand this pair of stars has been full of surprises.

      To be continued . . . . . . . . . .

      John

      • Hi John, I was away on holiday last week so no chance of another
        look at 68 Her. I was home on Saturday but nothing but clouds
        since, and tonight not looking great as well. Very surprised at the
        mag. I thought it looked brighter than its given mag. Hope to get
        another look soon.

        Pat.

Leave a Reply

Fill in your details below or click an icon to log in:

WordPress.com Logo

You are commenting using your WordPress.com account. Log Out / Change )

Twitter picture

You are commenting using your Twitter account. Log Out / Change )

Facebook photo

You are commenting using your Facebook account. Log Out / Change )

Google+ photo

You are commenting using your Google+ account. Log Out / Change )

Connecting to %s

%d bloggers like this: